Markov model — In probability theory, a Markov model is a stochastic model that assumes the Markov property. Generally, this assumption enables reasoning and computation with the model that would otherwise be intractable. Contents 1 Introduction 2 Markov chain… … Wikipedia
Hidden Markov model — Probabilistic parameters of a hidden Markov model (example) x mdash; states y mdash; possible observations a mdash; state transition probabilities b mdash; output probabilitiesA hidden Markov model (HMM) is a statistical model in which the system … Wikipedia
Variable-order Markov model — Variable order Markov (VOM) models are an important class of models that extend the well known Markov chain models. In contrast to the Markov chain models, where each random variable in a sequence with a Markov property depends on a fixed number… … Wikipedia
Hierarchical hidden Markov model — The Hierarchical hidden Markov model (HHMM) is a statistical model derived from the hidden Markov model (HMM). In an HHMM each state is considered to be a self contained probabilistic model. More precisely each stateof the HHMM is itself an HHMM … Wikipedia
Hidden semi-Markov model — A hidden semi Markov model (HSMM) is a statistical model with the same structure as a hidden Markov model except that the unobservable process is semi Markov rather than Markov. This means that the probability of there being a change in the… … Wikipedia
Hidden Markov model — Das Hidden Markov Model (HMM) ist ein stochastisches Modell, das sich durch zwei Zufallsprozesse beschreiben lässt. Ein Hidden Markov Model ist auch die einfachste Form eines dynamischen Bayesschen Netz. Der erste Zufallsprozess entspricht dabei… … Deutsch Wikipedia
Layered hidden Markov model — The layered hidden Markov model (LHMM) is a statistical model derived from the hidden Markov model (HMM). A layered hidden Markov model (LHMM) consists of N levels of HMMs, where the HMMs on level i + 1 correspond to observation symbols or… … Wikipedia
Hidden Markov Model — Das Hidden Markov Model (HMM) ist ein stochastisches Modell, das sich durch zwei Zufallsprozesse beschreiben lässt. Es ist die einfachste Form eines dynamischen Bayes schen Netzes. Der erste Zufallsprozess entspricht dabei einer Markov Kette, die … Deutsch Wikipedia
Maximum-entropy Markov model — MEMM redirects here. For the German Nordic combined skier, see Silvio Memm. In machine learning, a maximum entropy Markov model (MEMM), or conditional Markov model (CMM), is a graphical model for sequence labeling that combines features of hidden … Wikipedia
Markov perfect equilibrium — A solution concept in game theory Relationships Subset of Subgame perfect equilibrium Significance Proposed by … Wikipedia